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In many applications one would like to use infor-
mation from both color and texture features in order
to segment an image. We propose a novel technique
to combine \soft" segmentations computed for two or
more features independently. Our algorithm merges
models according to a maximum descriptiveness cri-
terion, and allows to choose any number of classes
for the �nal grouping. This technique also allows to
improve the quality of supervised classi�cation based
on one feature (e.g. color) by merging information
from unsupervised segmentation based on another fea-
ture (e.g., texture.)

both

Image segmentation is a fundamental task in Com-
puter Vision. Color and texture provide powerful cues
for segmenting a still image, and much work has been
devoted to developing grouping algorithms based on
these two features [1],[3],[5]. In fact, most of the lit-
erature deals with segmentation based on either color
or texture; this work was originated by the intuition
that using information provided by features, one
should be able to obtain more robust and meaningful
results.

Underlying our approach is the hypothesis that in
typical images color and texture features are not sta-
tistically independent. Perhaps the simplest way to
exploit this dependency is to concatenate the color
and texture feature vectors together, and then run the
grouping algorithm of choice on such super{vectors.
This approach, however, may give the feeling of \com-
paring apples with oranges". Indeed, color and texture
features often have very di�erent statistical behaviors;
one may prefer to use the most suitable grouping algo-
rithm for each feature separately, and then somehow
combine the results of the two segmentations together.

This work introduces a strategy to merge together

in a Bayesian framework segmentations computed on
color and texture features independently. The only
requirement is that the segmentations are expressed
in terms of posterior probabilities [2]. Note that most
clustering algorithms explicitly compute estimates of
the posterior distributions, and do the �nal assign-
ment by Bayesian classi�cation (i.e., they assign a fea-
ture to the class that most likely generated it.)

For example, in Figure 2 (b) and (c) we show in-
stances of color and texture segmentation of the im-
age in Figure 2 (a). The texture features are vectors
formed by the absolute values of the outputs of a bank
of Gabor �lters, after smoothing by a gaussian �lter
[3]. The posterior distributions in both cases have
been estimated by Expectation Maximization [2]; the
\hard" segmentation shown in the �gures is the re-
sult of Bayesian classi�cation based on such distribu-
tions. Both models have four classes, although our
algorithm can accept any combination of classes. The
scene in �gure 2(a) is composed by a small number
of homogeneous parts: two bushes, a paved road on
the right, dirt soil on the left, a shadow area near
a bush and piece of dark background. The color seg-
menter (�gure 2(b)) successfully separates the \bush",
the \background" and the \road" areas, but is unable
to discriminate the \road" from \soil" parts, which
have very similar color. The texture segmenter does
separate the \road" and \soil" areas, but cannot dis-
criminate the \road" from the \background" parts;
in addition, it assigns the \soil" area to two distinct
classes.

Our technique for model fusion involves two steps.
First, the two models are merged by a \Cartesian
product" operator, discussed in section 2. This oper-
ation preserves all the information about the models,
but has the disadvantage of creating a large number of
classes, equal to the product of the number of classes of
the two original models. Then, the number of classes
of the combined model is reduced by a technique, pre-
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sented in section 3, that \clips together" sets of classes
based on a maximum descriptiveness criterion. This
procedure may be extended straightforwardly to any
number of segmentations. An intriguing applica-
tion of our algorithm is discussed in section 4, and
involves information fusion from supervised classi�ca-
tion (e.g., based on color) and unsupervised segmen-
tation (e.g., based on texture.) The unsupervised seg-
mentation is used to leverage the estimates provided
by the trained model, resulting in a more accurate
classi�cation.

Our merging technique starts from given mixture
models [2] (called \models" in the following.) The -th
model, , is composed by classes, and de�nes a
probability density function ( ):

( ) = ( ) ( ) (1)

where , the observed feature, lives in a space .
For example, may be a color vector, or a texture
feature in a multiscale/multiorientation space. The
conditional likelihood functions ( ) and the priors
( ) specify the model completely. The posterior

distributions are given by Bayes' rule:

( ) =
( ) ( )

( )
(2)

( ) is the probability that the observed feature
was generated by the class of index . The Bayesian
classi�er for assigns a feature to the class in-
dexed by the location of the maximum of ( ). To
simplify our presentation, we will assume in the follow-
ing that all priors are strictly positive: if a prior ( )
is null, we can safely remove the class with index
from the model. Note that

( ) = ( ) ( ) = [ ( )] (3)

where the expectation is computed with respect to the
density ( ).

The of the models is a
new model with probability distribution .

is completely speci�ed by the following axioms:

1. has = classes, corresponding to
the Cartesian product of the classes of the models

: ( ).

2. The conditional likelihood of the feature =
( ) given the class of index is equal

to ( ) = ( ).

3. The priors factorize as ( ) = ( ).

It follows straightforwardly that the likelihood and the
posteriors of the Cartesian product of models factorize
as well:

( ) = ( ) ( ) = ( ) (4)

Note that all the information about the original
models is preserved in their Cartesian product .
The Bayesian classi�er for assigns a feature to
the model ( ) such that is the class
assigned to by the Bayesian classi�er for . Fig-
ure 2 (d) shows the Bayesian segmentation relative to
the Cartesian product of the color and texture models
of �gure 2 (b) and (c). The new model has 16 classes.
In the next section we describe a procedure to reduce
the dimensionality (i.e., the number of classes) of a
model, in such a way that the loss of \descriptiveness"
of the model is minimized.

Assume we are given a model with classes.
We introduce here a technique to build a new model
that has fewer classes than but explains the data
exactly as , i.e., it de�nes the same likelihood ( )
as . Suppose for example that we want to reduce the
dimensionality of the model to . Our strategy
is very simple: we just \clip together" + 1 classes
of into a new super-class, leaving the other classes
untouched. We may decide, for instance, to clip to-
gether the classes of index into a new
class of index . The probability that a feature
was generated by the union of such classes according
to is equal to the sum of the corresponding poste-
riors. This is the value that we assign to the posterior

( ) for the new model; the posteriors for
the other classes are the same as in :

( ) = ( ) 1

( ) = ( )

If in addition we impose that the likelihood function
( ) is the same in both models, the new model is
completely speci�ed.

In general, to reduce the model dimension from
to , we may choose any disjoint groups of
classes with components each, such that =
+ , and clip together the classes in each group.

A criterion for the selection of the most appropriate
clipping scheme is presented in the next section.
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Dimensionality reduction via class{clipping in-
volves some loss of descriptiveness of the model, where
by \descriptiveness" we mean the information that the
model provides about the image. If for example two
classes that \explain" well two di�erent portions of the
image are clipped together, the new, less informative
model will probably assign both portions of the image
to the same class. In this section we give a formal de�-
nition of descriptiveness, and present an algorithm for
selecting a class{clipping scheme that minimizes the
loss of descriptiveness for a given model.

Loosely speaking, we will say that a model is highly
descriptive if its classes \explain well" the features
that are assigned to them. More precisely, we de�ne
the descriptiveness ( ) of class as follows:

( ) = ( ) ( ) (5)

while the descriptiveness of the model, , is the sum
of the class descriptivenesses:

= ( ) (6)

Thus, the class descriptiveness ( ) is the integral of
the conditional likelihood weighted by the posterior
distribution. It is clear from (5) that 0 ( ) 1
(since ( ) = 1, ( ) 0 and 0 ( ) 1)
and therefore . A single{class model has = 1,
which is the smallest value of descriptiveness attain-
able by a model (this property derives straightfor-
wardly from Fact 1, presented later in this section.)

To justify our choice for the descriptiveness, let us
consider two diametrically di�erent examples of mod-
els with two classes. In the �rst model, the two pos-
terior probabilities have disjoint supports in feature
space. Each class thus completely describes (by means
of the corresponding conditional likelihood) the set of
features that are assigned to it. It is easily seen that
( ) = 1 for both classes, and therefore the model

descriptiveness is equal to 2, the highest attainable
value for a two{class model. It is intuitive that clip-
ping together these two classes would result in a ma-
jor loss of information (descriptiveness) of the model.
The corresponding variation of descriptiveness is ac-
tually � = 1. In the second model, the two classes
have exactly the same conditional likelihood and pri-
ors (and therefore the same posteriors ( ) = 0 5 .)
This model is \redundant": there is really no need to
use two classes to describe the data! No information
is lost if such two classes are clipped together. This

notion is captured by our de�nition of descriptiveness,
that assigns = 1 to the model. Class{clipping thus
gives � = 0 in this case.

In both previous examples the model descriptive-
ness did not increase as a consequence of class clipping.
This is actually a general property of descriptiveness,
as stated by the following result (whose proof can be
found in the Appendix):

We thus propose the following criterion for dimension-
ality reduction: choose the clipping scheme that min-
imizes the decrement of the model descriptiveness.

Unfortunately, the number of possible clipping
schemes may be very high even for small model di-
mensions. For example, in order to reduce the num-
ber of classes from 16 to 13 we may choose among
165,620 di�erent combinations of class clipping. Mea-
suring the decrement of model descriptiveness for each
one of those schemes may require a prohibitive com-
putational cost. A suboptimal solution can be found
using a fast greedy algorithm that builds a sequence of
clippings involving only two classes at a time. At each
step, the two classes that minimize the decrement of
model descriptiveness are selected. To compute the
model descriptiveness, we make use of the following
identity (from (5) and using Bayes' rule):

( ) = ( )
( ) ( )

( )
(7)

=
[ ( ) ]

( )

where the expectation is computed with respect to
( ). In practice, the expectations in (7) are estimated
by averaging ( ) over the image. Our greedy al-
gorithm for class{clipping is described in detail in �g-
ure 1.

Figure 2 (e){(i) shows the results of Bayesian seg-
mentation after dimensionality reduction from 16 to
7, 6, 5, 4 and 3 classes respectively, based on our max-
imum descriptiveness criterion. Each class of the re-
duced dimension models now correctly represents a
characteristic area of the image (compare for example
�gure 2 (h) with (b) and (c) for the 4-class model).
The computation of the optimal clipping scheme for
reducing the model dimension from 16 to 4, using a
Matlab implementation of our greedy algorithm, re-
quires about 15 seconds of execution time on a Power
Mac G3 266 Mhz (the image size is 256 380 pixels.)

In �gure 2 (k) we plotted the variation of model
descriptiveness during the class{clipping process for
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(a): Test image. (b) Color{based segmentation (4
classes.) (c) Texture{based segmentation (4 classes.) (d) Seg-
mentation after Cartesian product (16 classes.) (e){(i): Seg-
mentation after model merging ((e): 7 classes, (f): 6 classes,
(g): 5 classes, (h): 4 classes, (i): 3 classes.) (j): Segmenta-
tion after model merging (4 classes), with mean entropy of the
color{based model set to a value 3 times larger than the mean
entropy of the texture{basedmodel. (k) Variation � of model
descriptiveness as a function of the number of classes.

Given the set of posteriors ( ) and of
priors ( ), 1 :

Build auxiliary vector and matrix :

[ ] = , 1 :

[ ] =

[ ] + [ ]

1

otherwise

Initialize an empty list ;
Repeat times:

(� �) = arg min [ ];
Add � to the list ;
Update (� ) (� ) + (� ) (� ) 0;
Update (�) (�) + (�);
Update [�];
Update [� ] for � , ;
Update [ �] for � , ;
Set [ �] = for �;
Set [� ] = for �;

Remove the classes indexed by the elements of .

Figure 1: The greedy algorithm to select a class{
clipping scheme that minimizes the decrement of
model descriptiveness (see section 3.1.)

our example (for each model dimension we plotted the
(negative) increment � consequent to the 2-class
clipping that generated that model.) Note that the
algorithm for the greedy selection of classes, which re-
duces the dimension by one at a time, allows us to
easily compute these values as a by-product. From
�gure 2 (k) we notice that the decrement of descrip-
tiveness ( � ) usually increases as the dimension of
the model decreases (remember that our algorithm
chooses for each dimension the class{clipping that
gives the smallest value of � .) Future work will
be devoted to studying the possibility of selecting the
\most appropriate" number of classes for the �nal seg-
mentation based on the analysis of the model descrip-
tiveness behavior.

In the previous sections we have described a strat-
egy for model fusion that �rst builds the Cartesian
product of two models, and then performs dimension-
ality reduction via class{clipping. An implicit assump-
tions was that the two original models should give the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

Figure 2:
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Figure 3: (a): Test image. (b) Color{based super-
vised classi�cation into the \road" class (yellow) and
the \grass" area (green.) (c) Texture{based unsu-
pervised segmentation (3 classes.) (d) Hybrid super-
vised/unsupervised classi�cation.

same contribution to the �nal segmentation. This hy-
pothesis does not hold true if the \softness" of seg-
mentation is very di�erent in the two models. The
softness of segmentation can be measured in terms of
the of the model, a well-known concept
in the �elds of statistical physics and mixture estima-
tion [4],[6].

Given a feature , the entropy of the posterior dis-
tribution ( ) is de�ned by [2]

( ) = ( ) log ( ) (8)

The entropy ( ) measures the softness of the class
assignment. A distribution with null entropy assigns
to exactly one class; the maximumvalue of the entropy
is log , and is attained when all classes are equally
likely to have generated . The of a
model is de�ned by the expectation of ( ) computed
with respect to ( ):

= [ ( ) log ( )] (9)

In practice, the mean entropy can be estimated by av-
eraging ( ) over the observed image. A model with
null mean entropy can only perform \hard" classi�-
cation, and will be called . Note that the
mean entropy of a model estimated via Expectation
Maximization is a function of the \temperature" of
the algorithm [6].

It is easy to see that if two models to be merged
have very di�erent values of the mean entropy, the
model with the smallest entropy will \dominate" the
combined model. This undesirable e�ect may be cor-
rected by applying to one of the two models the simple

entropy equalization procedure proposed in the follow-
ing.

Our equalization operator starts from a model
and produces a new model with the same number of
classes . The entropy of this new model can be tuned
to match any desired value log , and the asso-
ciated Bayesian classi�er yields the same results as the
Bayesian classi�er for . The equalization operator
simply replaces each posterior distribution ( ) with
the new distribution ( ) de�ned as follows:

( ) = ( ) ( ) 0 (10)

where is a normalizing coe�cient:

( ) =
1

( )
(11)

The mean entropy properties of the equalization op-
erator are summarized by the following result:

1
1

The proof can be found in the Appendix. Note that
= 0 implies that the mean entropy of ( ) is

equal to log ; the mean entropy of ( ) can be
made as small as desired by a suitably large value of
. Also note that for each feature the location of the

maximum of the posterior distribution is not changed
by the equalization, so that the Bayesian classi�er will
yield the same segmentation for the two models.

Now, suppose that the two models to be merged
have di�erent mean entropies. We may modify one
of the models via the equalization operator, so that
its mean entropy matches the mean entropy of the
other model. The appropriate value of the parameter
may be found using any non{linear one{dimensional

minimization technique.
In some cases, equalization may also be used to

make either of the two models dominant, i.e. to as-
sign di�erent \weights" to the models to be merged.
For example, �gure 2 (j) shows the results of Bayesian
segmentation after equalizing the color{based model
to a value of the mean entropy 3 times larger than
the mean entropy of the texture{based model (the
combined model dimension was reduced to 4 by class{
clipping.) By comparing �gure 2 (j) with (h) and (c)
it results clear that the �nal segmentation is domi-
nated by the texture{based model. We should point
out, however, that while this and other experimental
results are very encouraging, we still lack a complete
understanding of the relation between mean entropy
and model dominance, which will be the object of fu-
ture research.
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4 Hybrid classi�cation

5 Conclusions

Acknowledgments

The main di�erences between supervised classi�ca-
tion and unsupervised clustering can be summarized
as follows:

1. The classes (\labels") of a supervised classi�er
usually represent \physical" causes, and therefore
are not logically interchangeable;

2. The statistical model of a supervised classi�er is
usually learned from training data, while unsu-
pervised clustering does not require training in
principle.

The Bayesian classi�er assigns a feature to the max-
imizer of the posterior distribution [2]. In many in-
stances, only the conditional likelihoods ( ) are
learned; however, reasonable assumptions about the
class priors ( ) are often available, and the posterior
distributions can be computed using Bayes' rule.

In this section we propose to merge a model
for supervised classi�cation with a model for un-
supervised segmentation (based on a di�erent feature
space,) to create a \hybrid" classi�er which assigns
each image point to some label of . The intuition
is that information from the \unsupervised model"
(which identi�es clusters in the feature space based on
the current image) may be used to leverage the classi-
�cation performed by the \supervised model", which
is learned from a large training data set and may not
be optimal for the current instance.

The merging algorithm discussed in the previous
sections de�nes a model with classes that are the
union of elements of the Cartesian product of and

. If represents a generic class of , we may
write

= ( ) (12)

where and are classes of and respec-
tively, indexed by the corresponding subscripts. To
complete the de�nition of the hybrid classi�cation
model, we need to be able to assign labels from to
the image using the new super-model. In other words,
we need to identify each class with some class of .
If the set of classes of that form the super{class
is composed by just one element , than we sim-

ply identify with . In general, however, may
have more than one element; in this case, we identify
with the class that maximizes the to
, de�ned by

[ ( ( ) )] = (13)

= [ ( ) ( ( ) )]

where the expectation is computed with respect to
( ) (with = ( ).) ( ), ( ) and ( )
represent the posteriors of the models , and

respectively.
We present an example of hybrid classi�cation in

Figure 3. Figure 3(a) shows a scene with a dirt road on
the left and dry grass on the right. Supervised color-
based classi�cation (�gure 3(b)) is performed using
a trained gaussian model. The \road" class and the
\grass" class have very similar colors; this is the reason
why pixels in the top{right quadrant are misclassi�ed
as belonging to the \road" class. Figure 3(c) shows
the results of unsupervised texture segmentation with
three classes, computed via Expectation Maximiza-
tion. The segmenter isolates uniform regions corre-
sponding to the road and to the grass areas, plus a
region corresponding to the border of the road. Af-
ter mean entropy equalization, the two models are
merged into a new model with four classes; the �-
nal hybrid classi�cation is shown in Figure 3(d). The
hybrid classi�er has correctly labeled each one of the
four classes of the merged model as either \road" or
\grass". The information from the texture model has
helped to correctly classify most pixels that were mis-
classi�ed in �gure 3(b).

We have presented a technique for merging together
two segmentations computed independently over color
and texture. Our technique is very general, and in
principle can be applied also to other classes of fea-
tures, such as motion; it only requires that the pos-
terior distributions that originated the segmentations
are available. The results show the e�ectiveness of the
maximumdescriptiveness criterion for reducing the di-
mensionality of the Cartesian product of the two mix-
ture models. We have also introduced a technique for
hybrid supervised/unsupervised classi�cation, based
on our merging algorithm, that can improve the per-
formance of supervised classi�cation using consensus
from di�erent features.

The research described in this paper was carried
out by the Jet Propulsion Laboratory, California In-
stitute of Technology, under a contract with the Na-
tional Aeronautics and Space Administration. This
work was supported in part by the NASA Telerobotics
program and by the NASA Remote Exploration and
Experimentation task. Reference herein to any spe-
ci�c commercial product, process, or service by trade
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A class{clipping operation can al-
ways be implemented by a sequence of class{clippings
involving two classes at a time. We show in the fol-
lowing that the model descriptiveness can never in-
crease with any such step. Assume classes and
are clipped together; using (7) and (6), and remem-
bering that the likelihood ( ) does not change after
class{clipping, we maintain that the variation � of
the model descriptiveness is

� =

= ( )

(14)

Now, it is easy to prove that, for any , term

is always non{

positive. Thus, since ( ) is always non{negative,
� 0, and the claim is proved.

We just need to prove the claim for
the case 1. The proof is based on the following
two results.

The entropy of a probability distribution
increases if two values of the distribution are moved
closer to each other, while the other values are left
untouched.

The claim is a direct consequence of the con-
vexity of the function log .

Let ( ) 1 be a probability dis-
tribution and, for a given , let and be the
sets of the indices of the smallest values and of the

largest values of ( ) respectively. Now form
a new distribution �( ) from ( ) by increasing some
of the values with index in while at the same time
decreasing some of the values with index in , with
the requirement that

max �( ) min �( )

Then the entropy of �( ) is higher than the entropy
of ( ).

The transformation from ( ) to �( ) can be
decomposed into a sequence of steps, each one involv-
ing just one value with index in and just one value
with index in . Therefore, by Lemma 1, the entropy
is increased at each such step.

Now, it is easy to prove that the function ( ) ,
with ( ) de�ned in (11), vanishes in correspondence
of the value = ( ) , which is located between the
smallest and the largest values of ( ). Therefore, if
( ) has non-null entropy, the equalization operator

(10) with 1 falls into the class of transformations
considered in Lemma 2: the set is composed by
all the such that ( ) ( ) , the set is
composed by all the other indices. This proves that for
any the entropy of ( ) increases as a consequence
of equalization with 1.
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